SMA-CG Prototype


Shape Memory Alloy Activated Compression Garments (SMA-CG)

The research and design of novel, “smart” compression clothing is a collaborative project between the Wearable Technology lab and the Joyner lab at the Mayo Clinic.  The team’s aim is to develop controllable gaited and gradient compression of the legs through the integration of shape memory materials into garments, to develop novel “smart” compression clothing that will have important applications, from consumer uses to clinical interventions. With the unique experience in space suit design and smart fabrics at UMN and the applied research in clinical and human performance physiology at Mayo Clinic, we are developing smart fabrics where degree of compression, timing of compression, type and site of compression (pressure) can be controlled dynamically. The applications for this new technology include augmenting venous return for conditions of orthostatic intolerance (e.g., POTS), cardiac rehabilitation in heart failure patients, lymphedema venous insufficiency, reducing DVT risk during long plane flights, sports performance, and countermeasures for flight or space flight. While the potential uses for this technology are broad, the basic design is similar across many conditions and thus our initial goals for the purposes of this application and funding are to 1) develop an initial prototype smart fabric compression garment to dynamically oppose orthostatic changes and that can be synchronized to body position and an individual’s electrocardiogram, 2) to determine the compression thresholds needed, timing and synchrony of compression for human applications and to demonstrate maintenance of blood pressure and reduced autonomic responses to tilt table testing or LBNP (lower body negative pressure) and 3) evidence of augmented venous return by synchronizing compression during cardiac diastole.


Funded by Minnesota Partnership for Biotechnology and Medical Genomics


Wearable Technology Lab

1985 Buford Circle

240 McNeal Hall (directions and maps)
1985 Buford Avenue

P: 612.624.9700